Neuromuscular Stimulation and Musculo-Skeletal Disorders: A Technology Approach to Prevention and Intervention in Workers

Lovely Krishen, PhD
Sr. Advisor, Research and Development
Biosysco, Inc.

Edison Electric Institute
Spring 2017 Occupational Health & Safety Conference
Sugarland, Texas
April 25, 2017
Overview

• Background
 ▪ Musculoskeletal Disorders
 ▪ R&D Focus: what areas most benefit workers?

• Technology Discussion
 ▪ Neuromuscular Stimulation
 ▪ Traditional techniques vs. Sigma Q technology approach

• Potential applications

• Research ideas on the horizon

• Wrap-up and Summary
Musculo-Skeletal System in Motion

- Movement involves complex nervous system interaction with muscle tissue
 - Neuromuscular junctions
 - Feedback loop
- Signal interactions from brain and spinal cord
 - Lower motor neurons – coordinate from spine to muscles
 - Upper motor neurons – regulate messages from lower motor neurons at higher level
In skeletal muscle, a nervous impulse releases acetylcholine at the NM junction, creating an action potential and leading to contraction.
Musculoskeletal Disorders

• Musculo-skeletal disorders comprise the most common injury type (>50%) in electric power workers and account for nearly 44% of medical costs *

• Work-related Musculo-Skeletal Disorders (WMSDs)
 ▪ Catch all term for group of painful disorders of muscles, tendons, and nerves.
 ▪ Specifically related to stress-related injuries caused from performance of job tasks
 ▪ Carpal tunnel syndrome, tendonitis, Chronic lower back pain, and tension neck syndrome are examples
 ▪ Can be acute injuries or chronic manifestation

• Cumulative Stress – by other names
 ▪ Repetitive Strain injuries
 ▪ Repetitive motion injuries
 ▪ Cumulative trauma disorders
 ▪ Overuse syndrome
 ▪ Soft tissue disorders

WMSD Risk Factors

- Risk Factor is a workplace condition associated with onset of a health problem
- WMSD risk factors are not just about repetition
 - Other factors such as vibration, posture, inconsistent force applications, etc. contribute to risk
- Effective Strategy to prevent and eliminate risks can involve:
 - Comprehensive ergonomic program
 - Work planning
 - Training
 - Health Monitoring

Where and how does Technology R&D play a role in characterizing or eliminating the risk?

www.ccohs.ca
Areas of Research and Development Focus

- **Prevention**
 - Pre-task Baseline Conditioning

- **Diagnosis**
 - Field Assessment
 - Personal Feedback

- **Intervention**
 - On-the-spot treatment
 - Task realignment

- **Post-work Treatment**
 - Worksite therapy
 - Home therapy

• Addressing MSD-based injury in Workers
 - Stop acute incidents before they happen
 - **KEY:** Focus on disrupting accumulation of repetitive stress injuries

• Areas of focus
 - **Pre-work:** Preventing damage through conditioning/strengthening
 - **On-the-job:**
 - Diagnosis/self-monitoring in the field
 - Real-time Intervention
 - **Post-work:** Therapy at the worksite or at home to relieve stress and pain

• **NONINVASIVE DIAGNOSTICS FIRST!**
Assessing the State of the Injury

• Assessing muscle health
 - Biopsy (too invasive)
 - Imaging ($$$)
 - Pain scale (subjective)
 - Performance and Fatigue characteristics (max contraction levels over baseline)

• Establish robust diagnostics
 - Efficient
 - Noninvasive
 - Relatively inexpensive
 - Adaptive and Portable to Work site or Field
 - Consistent
 - Customized Profile

How can we noninvasively monitor health and prevention measures in workers at risk for developing WMSDs?
Neuromuscular Stimulation: Safe and Effective

- **Neuromuscular Electrical Stimulation (NMES)**
- **Elicitation of muscle contraction using electric impulses**
 - Potential to serve as a strength training tool for healthy subjects and athletes
 - Rehabilitation and preventive tool for partially or totally immobilized patients
 - Testing tool for evaluating the neural and/or muscular function *in vivo*
 - Post-exercise recovery tool for athletes
- **Main types of NMES (noninvasive)**
 - Transcutaneous Electrical Nerve Stimulation (TENS)
 - Faradic
 - Galvanic
 - Other noninvasive treatment is Ultrasound
Current NMES and US Characteristics

• **TENS**
 - An electronic device that applies electrical stimulation to the skin surface at the pain (or testing) site

• **Faradic versus Galvanic**
 - Faradic is higher frequency current (50-100Hz), whereas galvanic is low frequency
 - Faradic is shorter duration ranging from 0.01 to 1ms, galvanic is of long duration
 - Faradic is used to stimulate innervated muscles, and galvanic to denervated muscles

• **Ultrasound**
 - Emits sound waves (1-3 MHz) to create vibrations that help increase blood flow for relief of spasms
Current NMES Technology Characteristics

- **Advantages**
 - Portable Technology!
 - Effects well-understood
 - Can help establish some sort of baseline response
 - Can help with circulatory issues

- **Some Disadvantages**
 - Does not bypass sensory nerve system – painful sensation and skin irritation (“pins and needles”)
 - Faradic give mild pricking type of sensation, where galvanic give stabbing type of sensation
 - Not localized enough
 - Not eliciting deep tissue conditioning and re-education
 - Body adapts quickly and efficacy is decreased

IS THERE AN ALTERNATIVE SINGLE TECHNOLOGY THAT CAN BE USED FOR DIAGNOSTICS, CONDITIONING, TREATMENT AND RE-EDUCATION?

YES, SIGMA Q
Sigma Q Technology

- Sigma Q technology utilizes micro-gating to achieve muscular contraction and motor neuron nerve activation via topically applied electrodes/sensors, in a way which effectively bypasses the sensory nervous system.
- The technology is a patented combination of electrical charges and ultrasound called “charged packets”
- These “charged packets” use electrical energy in a way that penetrates muscle groups more deeply; the signal then continues along the nerve path within the body allowing for identification of related areas of inflammation and muscle weakness
Comparative Features of NMES and Sigma Q

<table>
<thead>
<tr>
<th>Features</th>
<th>Sigma Q®</th>
<th>Galvanic</th>
<th>Ultrasound</th>
<th>Faradism</th>
<th>TENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Low voltage</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>High voltage</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Low frequency</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>High frequency</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Variable frequency</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Packet delivery</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Variable flow direction</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Deeper tissue penetration</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Precise control in real time</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Extended effected zone</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Tailored to recipient</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Diagnostic capability</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Cumulative effect</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>No sensory stimulation</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Treats source of problem rather than symptom</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Patent & Trade Mark</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
The product collection is designed to promote more immediate deep muscle healing by “re-activating” localized (micro-level) muscle tissue vs. merely treating the whole muscle (macro-level) area.

The treatment is also safely administered in water, so can be embedded in a spa system.

Treatments using Sigma Q technology have been successfully applied in the following areas:

- Diagnosis and assessment
- Nerve regeneration and neuromuscular re-activation
- Sports medicine
- Complementary medicine (analgesia and rehabilitation)

https://www.youtube.com/watch?v=zGOM9IbBUj8
Potential Technology Applications

Prevention
- Pre-task Baseline
- Conditioning

Diagnosis
- Field Assessment
- Personal Feedback

Intervention
- On-the-spot treatment
- Task realignment

Post-work Treatment
- Worksite therapy
- Home therapy

Establish Baseline
- Medical testing
- Conditioning
- Resistance Exercise

Monitoring
- Wearable Devices*
- Real-time
- Field Application

Post-work treatment
- Worksite spa therapy
- Home spa therapy

*Hexoskin example
Addressing OHS Research Gaps

• **Objective metric for improved conditioning and muscle recovery**
 - Potential for muscle fatigue recovery metric application (currently being developed for athletes)
 - Biosysco collaboration with Pepperdine University Department of Sports Medicine to help test the prototype application with Sigma Q™

• **Metric for Cumulative Trauma assessment**
 - Based on a proposed Fatigue-failure approach
 - Lower Back Cumulative Trauma Index
 - Biosysco collaborative efforts underway with Auburn University Department of Industrial and Systems Engineering and Human Factors/Ergonomics Studies
Other R&D Ideas on the Horizon

• Technology Upgrades
 ▪ Sigma Q Wearable Technology system design
 o Remote application of stimulation protocols (wireless)
 o Compatible with PPE and stressful work environments
 o Closed loop system with customized controls for worker
 ▪ Spa therapy unit for worksite (if updates needed)

• Further research
 ▪ *In vivo* fluid shift and muscle blood flow changes (fatigue-recovery impacts) with applied Sigma Q Technology
 ▪ Muscle loading and isometric strength testing with applied Sigma Q technology

Biosysco partners with Industry and academia to conduct short studies that support worker risk mitigation of MSDs
Summary and Key Takeaways

• The musculo-skeletal system depends on healthy performance of the neuromuscular junction and nervous system feedback loop
 ▪ Current non-invasive diagnostics and treatment technology involves stimulation of the muscle with electrical signals - neuromuscular stimulation (NMES) or Ultrasound application
 ▪ Widely used and noninvasive NMES devices/technologies include TENS, Galvanic (long duration, voltage dc) and Faradic (short duration, higher frequency current)
 ▪ These technologies, while portable, have several limitations for longer term use in cumulative trauma situations

• Work-related Musculo-skeletal disorders (WMSDs) are the leading type of injury in electric utility workers and account for a significant cost-impact to the industry
 ▪ Repetitive stress-based activity and environmental/clinical issues are part of the complex array of risk factors
 ▪ These injury risks need to be addressed and minimized or eliminated through effective ergonomics programs
 ▪ Incorporating new and advanced mitigation technologies can enhance worker safety and health, corporate costs, and operational performance
Summary and Key Takeaways

• **OHS Technology Research can be further developed in these areas:**
 - Prevention measures through pre-work conditioning and strengthening
 - Diagnosing/monitoring areas of weakness through wearable, remote technology
 - Active intervention to apply real-time treatment or appropriate task realignment measures
 - Post-work short therapy session at the worksite or at home

• **The Sigma Q™ system provides noninvasive muscle re-education, deep conditioning, diagnosis, and rehabilitation**
 - Patented technology uses waveform packets (pulsed pattern) of electrical activation combined with ultrasound to achieve full muscle contraction along the neural pathway, as well as circulatory release
 - The technology can be used in dry form with embeddable electrodes in wearable formats as well in wet form with spa and shower formats

• **Biosysco will continue to grow and expand partnerships with academia and industry to design/develop new technology applications**
 - Research focused on objective metrics to determine improvements in conditioning, performance, and decreased risk of WSMD injury
Next Steps

Biosysco would like to expand current partnerships with the electric utility S&H teams to conduct investigations and develop devices that support worker risk mitigation of MSDs.

QUESTIONS?

Lovely Krishen, PhD
Sr. Advisor, R&D
Biosysco, Inc.
C: 281-734-5344
l.krishen@biosysco.com
www.biosysco.com

Maria Schmidt
VP, Research & Marketing
Biosysco, Inc.
333 S. Wabash Ave - 27th floor
Chicago, IL 60604
C: 773-294-4499
m.schmidt@biosysco.com